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S U M M A R Y  
This paper considers a system of coupled pairs of dual integral equations with constant coefficients involving Bessel 
functions of orders zero and unity. A solution is obtained in terms of the coefficients by reducing the system to a single 
integral equation of the Wiener-Hopf type with both the sum and difference kernels present. 

A simple transformation of the system causes the coefficient of the sum kernel to vanish. The transformation leaves 
the Wiener-Hopf equation unaltered except for the coefficients which become complex. An equation of this type was 
solved by Spence in 1967. Although Spence's solution does not cover complex coefficients it can be modified to do so. 
The result is quoted in this paper and is used to solve the system of coupled pairs of dual integral equations of the 
present paper. 

The adhesive contact problem recently solved by Gladwell is one in which the solution technique of the present 
paper has proved useful. 

I. Introduction 

Mixed boundary value problems are often solved by integral transform techniques. The 
approach leads to one or more pairs of dual integral equations. Some work has been done on 
simultaneous dual integral equations by Erdogan and Bahar El], Westmann [2], Keer [3], 
Spence [4] and Khadem [5]. Erdogan and Bahar reduced the problem to a system of infinite 
linear algebraic equations. Westmann gave a closed form solution for the system involving 
Bessel functions whose orders differ by two: Keer has recently obtained a solution for coupled 
pairs of dual integral equations by using the operator notation of Erdelyi and Sneddon in 
conjunction with Westmann's method. Neither Westmann's solution nor Keer's, however, 
covers the system treated here. Spence and Khadem solved the system of the present paper for 
special values of the eight constant coefficients. It happens that other values of the coefficients 
introduce additional terms in the analysis which require the present treatment. 

In the present paper, solution is given for the system of two pairs of dual integral equations 

f~ t - l[al~Pl(t)+a2~~ dt=fa(p)"  p< 1 
(1.1) 

i~ [a3qh (t) +a4rpz(t) ] Jo(pt)= fz(p ), <1 P 

i~O t-1[b1(~1(~)-}-b2(192(~)],]1(p~)g~=gl(p), p < l  
(1.2) 

1o [ b 3 q ~ 1 7 6  p >1 

subject to certain restrictions mentioned in the sequel, where ai, bi are known coefficients, real 
or complex. Equations (1.1) and (1.2) are denoted by system I. They are reduced in [5] to the 
following integral equation of the Wiener-Hopf type with both the sum and the difference 
kernels present : 

i r(o + '~ i ) = s(0k(t+0d  + P2 -- - -  s ( ~ ) k ( t - ~ ) d r  t >0 (1.3) 
(o (I) o o9 o 

* On leave of absence from the Department of Mathematics, University of Southampton. 
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where 

s(t) = t -  1(p2(t) , k(t) = sin(t)/~ct 

r(t) = 2 1 Hl(t ) + __ He(t ) _ D,(t) -- D2(t ) 
a3 ~ ~ ' 

wherein 

H 1 (t) = J;* (p) cos pt dp,  
0 

i' Dl(t ) = g*(p) sin . t a p ,  
0 

I 
oo 

H2(t ) = fff(p) cos ptdp 
i 

D2(t) = f7 g*(P)sin ptdp.  

(1.4) 

(1.5) 

The starred functions are defined in terms offi(p) and gi(p), thus 

J~(P) ~- ~ p ( x2 - -p2 ) f l (D)dP ,  J2g(D) = p(p2-x2)- �89  
(1.6) 

1 d p2(x2_p2)_ gl(p)dp ' O*(p)=x  (p2-x2)- g2(p)ap. 
gT(p) =- 0 x 

The coefficients fl,, f12 and co occurring in (1.3) are 

f l l -  b4 b2 a4 a2 b2 b4 a4 a2 
b3 bl + - - - '  f i e -  + - - - - -  a3 al b, b 3 a 3 al  (1.7) 

a4 b4 
co -- , a,,b3r 

a3 b3 

In section 2 it is argued that if system I is solved for (Pl and qo 2 + c5~o~, instead of q01 and (P2, 
then the coefficient of the sum kernel can be made to vanish by an appropriate choice of the 
parameter 3. The parameter ~ effectively transforms system I to the equivalent system II 
involving the unknown functions 01 (t) and 02 (t), where 

01(t) = (pl (t) , I]12 (t) = (p2(t) @ a(pl(t  ) . (1.8) 

System II obviously reduces to the Wiener-Hopf equation with the sum kernel absent. The 
solution of this equation is used in section 3 to solve the original system for qh and ~o 2. The 
solution is shown in section 4, to agree in special cases with those of Spence [4], Khadem [5] 
and Gladwell [6]. 

2. The Equivalent System 

Let 01 (t) and 02(0 be defined as in (1.8), then the equivalent system becomes 

f O t - l [ A 1 0 1 ( t ) + A 2 0 2 ( t ) ] J ~  p < l  

5~ [A3,1 (t)+ A4,2(t)]Jo(pt)dt=fe(p)  p > 1 
(2.1) 

where 

Aa 

B1 

t - - l [Bl~l( t )+B2~2(t )]J l (p t )dt=ya( f l )  p< 1 

[B3~l(t)+B4~2(t)]Jl(f lO dt =Y2(P) fl >1 

= a l -  0a2; A2 = a2; A3 = a 3 -  ~a4; A4 = a4 

= b l - a b 2 ;  B2 = b2; B3 = b3-ab~;  Ba = b4. 

(2.2) 

(2.3) 
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The system reduces to the following equation, which is equivalent to (1.3): 

(2(t) = 1--7, C,t } + fi f2({)k(t+{)d~ + f2(~)k(t-{)d~ 
co co (0' . o 

for t > 0, where 

and 

~'2(t) = t -1 @2(t) = t -1 [(p2(t)q-~qO l(t)~ 

B4. B 2 A4 A2 B2 B 4 A4 A2 
~1 - -  B3 B1 -[- A Z  - A7 ; ~2 - B1 B3 -[- A3 Z l  

C(t) = 1 1 Hl(t ) + H2(t ) _  Dl(t ) _  D2(t ) 
733 g, 

c o ,  A4 B4 A4B3r 
A3 B 3 ' 

It can be shown that fi'~ = 0 if ~ satisfies the quadratic 

A'(~Z + 2B' (~+C '= O, 

where 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

A'= a2a4blb4-a2a3b2b4-a2a4b2b3+ala4b2b 4 

B' = a2a3b2b3-ala~blb4 (2.8) 

C'=ala3blbg-ala3b2b3-a2a3blb3+aaa~blb3. 

The parameter6 being, in general, complex, causesthe coefficients A i, Bi, fi~ and co'to be com- 
plex. 

3. The Solution of  Sys tem I 

The Wiener-Hopf equation mentioned in section 2 has been solved by Spence [-8] for real 
coefficients. Spence's solution can, however, be modified to cover complex coefficients. The 
modified solution is presented here. 

The integral equation under consideration is 

f2(t)+fl f ~~ -)LC(t) = i  0c(t) t>0t<0 (3.1) 

where 
1 

2 co' fl = - fll 2 (3.2) 

Note that Spence's solution applies when C(t) is of the form 

(dr) t d ) l(t), (3.3) C ( t ) = P  d k( t )+Q dt 

where P and Q are n th degree polynomials in the operator d/dt, and / ( t )=  ( 1 -  cos t)/rrt. The 
function C(t)in (3.1)is of the form (3.3)iffl(p), 91(P) are polynomials andf2(p)=g2(p) O. 

It can be shown that the solution of (3.1) is 

~ 2 
c( - t )  = • -~ sinhlT~tc o [U(w) cos qo+wV(w) sin p]dw, (3.4) 

where (p = to0 +_ wx (the _+ sign corresponding respectively to g2(t) and c ( -  t)), ~: is complex and 
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U(w) = - ~ f l (2  sinh �89 ~c)+iwB2(w)z(w, to)} 

24 2/? + E(w), (3.5) 

2/ / 9  \ 
V(w) = - ~ sinh �89 , t c ) + i w B  1 ( w ) z ( w  , it)} 

2/?w 

,~i 2i 
+ ~ [s(w)-s(-w)] - ~ T(w), 

where tc=a+iz=~ -1 log(l+/?),  

~(w, ~c)} f ~ {  sinh Ky cot dy 
X (w, to) = cosech �89 Y 0 cosh ~cy cosZy+w2sin2y ' 

(3.6) 

(3.7) 

and 

Bl(w)  
B2(w)j = Q(iw)+Q(-iw) (3.s) 

E(W)T(w) } = R(w) _+ R ( -  w) . (3.9) 

The functions R(w) in (3.9) and s(w) in (3.5) and (3.6) are polynomials. The method for con- 
structing them from P ( -  iw) and Q ( -  iw) is described by Spence. For second order polynomials 

=P~ ; Q + q 2  , (3.1o) 

R(w) is found to be R(w)=po+~Pl +�89 +top2), or 

R(w) = [A + p2 w(r-  w) + iB(~-w) ] , (3.11) 

where 

A =po+apl + �89 2 ; B=pl+ap2,  (3.12) 

and s(w) is found to be 

s (w) = 2 sinh �89 (ql Io + q211 - iwq 2 Io), (3.13) 
7~ 

where I o and 11 are integrals defined in terms of ~b (w, ~): 

I o tc~(1, Ic) " I a 1 1 (3.14) = , = ~ - -  ~ K I  o �9 

This completes the solution of the integral equation (3.1). The function O(t)= t-1 {(P2 (t)+ 
6(pl (t)} has thus been determined. 

To obtain closed-form expressions for qh and Pa, one must write (3.4) twice, corresponding 
to 61 and 62, respectively (61, 62 satisfy Eq. (2.7)) The resulting two equations lead at once to 
the solution of the original system of dual integral equations. 

4. Existing Solutions 

(a) Reduction to Spence's Solution 

Spence [4] and Khadem [5] have studied the system described by (1.1) and (1.2), where 
a l = a a = b l = b a = - b 4  =1, a2=�89 a4=0,  b 2 = - ( l + � 8 9  fl(P)=a-lw(p), 91(p)=a- lu(p) ,  

f2 (P)= g2 (P)= 0. In this case, 6 has values of zero and -2.0.  For 6 = 0, we have 
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2fl 
c ( t )  = o 

where 

1 d f '  pw(p)dp u * ( y ) -  
w*(y) - a dy o (y2 p2)~, 

The integral equation (3.1) becomes 

[w* (y) cos y t -  u* (y) sin yt] dy , (4.1) 

11 d [r p2u(p)dp 
(4.2) a y dy Jo (y2 p2)~" 

f~(t)+fl to ~2(~)k(t-Qd~ =C(t )  t > 0 ,  (4.3) 

whose solution is,given by (3.4). Note that ~=  a = = -  * log (1 + 2), and v=0. The solution of 
(4.3) is 

ol , f - c ( - t )  = ~ sinh �89 o [U(w) cos(~cO++wt)+wV(w) sin(~cO++_wt)]dw, (4.4) 

where 
2 

U (w) = A - p 2 w  2 + - sinh �89 {ql [w2 z( w, to)-to0(1, ~c)] 

+q2[wZO(w, K)+�89189 tO)I} (4.5) 

2 
V(w) = - B  + - sinh �89 {0(w, ~c)ql-qz[wZz(w, ~c)- ~c0(1, ~c)]} . 

7~ 

Bl(w)= -2q2 w2 B2(w)=2ql iw 

E(w) = 2 A - p 2  w2 T(w) = - 2 i w B  

s (w)+s( -w)  4 sinha~c {K0(1, g)ql - r l  1 2 = - k~--y~c 0(1, ~c)]q2} 

4 
s (w)-  s ( -  w) = - - iw sinh 1 ~  {~q2 0 (1, ~) }, 

7Z 

(4.6) 

(4.7) 

Equations (4.4) and (4.5) are in agreement with Spence [4]. 

(b) Reductions to Gladwell's Solution 

Gladwell [6] has recently considered three pairs of simultaneous dual integral equations which 
he reduced to two pairs of the form considered here, with a t = b e = 1, ae = bl =0, a3 = b 4 =  r162 
14=b3=1-cr  f~(p)=dl, gl(p)=vp, fa(p)=gz(p)=O. These values of a,, bl give 8=  +1. For 
8 = + 1 ,  

A l = l ;  A 2 = 0 ;  A 3 = 2 c r  A 4 = 1 - r 1 6 2  (4.8) 

B a = - l ;  B 2 = 1 ;  B 3 = 1 - 2 c r  B 4 = a  

B~ = 2(1-a)/(2c~- 1), co' -- 1/(2c~- 1). (4.9) 

At this stage it is convenient to define quantities a and q such that 

e 2" = 1 / (2e-  1), a = 2t//~. (4.10) 
Then 

m ' = e  2", f i=  -2 (1+o0  ; l + f l = e  -2n. (4.11) 

Since 1 + fl is real, ~c = re- 1 log (1 + fi) = - a, also 
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C(t) = 2dl k(t)-4v ~Tt ' 

R. Khadem 

(4.12) 

that is, 

Po = 2dl , Pl = - 4 v ,  (4.13) 

P2 = P3 = "'" Pn = 0 ,  qa = q2 = ... q, = 0 �9 

The solution is 

2 sinh �89 [U(w) cos(~O-wt)-wV(w) sin(aO-wt)]dw, (4.14) 

where 

U(w) = 4(d,  + 2 w ) e  -2"  , V(w) = 8re -2"  , 

and since for ~ = - 0 ,  f l-1 sinh � 8 9 1 8 9  then 

2 e -  . [(dl +2~v  ) cos(aO-wt)-2vw sin(aO-wt)], (4.15) r  = 7 0 

corresponding to f i = - 1 ,  Eq. (3.1) can be solved again (note that in this case (4.8)-(4.14) 
should be altered accordingly), to give 

2 e,  [(d 1 +2av )  cos(~O+wt)-2vw sin(aO+wt)]dw, (4.16) q~2 (t) -- ~Pl (t) = -- ~ o 

in agreement with the result quoted by Gladwell. 
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